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Figure 1: Our algorithm introduces transmittance function maps for the computation of light scattering within participating media for both
real-time using a GeForce GTX480 (a, b) and production rendering (c) using Pixar’s RenderMan R©.

Abstract

The interaction between light and participating media involves
complex physical phenomena including light absorption and scat-
tering. Media such as fog, clouds or smoke feature complex light-
ing interactions that are intrinsically related to the properties of their
constitutive particles. As a result, the radiance transmitted by the
medium depends on the varying properties on the entire light paths,
which generate soft light shafts and opacity variations.

Simulating light scattering in these media usually requires com-
plex offline estimations. Real-time applications are either based on
heavy precomputations, limited to homogeneous media or relying
on simplistic rendering techniques such as billboards. We propose a
generic method for fast estimation of single scattering within partic-
ipating media. Introducing the concept of Transmittance Function
Maps and Uniform Projective Space Sampling, our method lever-
ages graphics hardware for interactive support of dynamic light
sources, viewpoints and participating media. Our method also ac-
counts for the shadows cast from solid objects, providing a full-
featured solution for fast rendering of participating media which
potentially embrace the entire scene.

1 Introduction

In the course of generating images of virtual worlds closer and
closer to reality, simulating translucence is unavoidable as the real
world is filled by semi-transparent materials, known as participating
media. Ranging from a bright haze to organic materials or heavy
smoke, their accurate rendering is an essential step towards real-
ism. The light traversal makes such materials hosts of complex
optical phenomena, known as scattering, absorption and emission.
This omnipresence in the real world has made realistic rendering of
translucency a highly active research area for decades, yielding nu-
merous real-time and offline solutions. The current state-of-the-art
techniques are either limited to offline rendering, or, for the sake of
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real-time performance, rely on heavy precomputations, approxima-
tions or assumptions on material homogeneity.

We introduce a generic method based on ray-marching for fast es-
timation of single scattering in both homogeneous and heteroge-
neous materials. The computational cost of such scattering simula-
tion is twofold: the accumulation of scattered contributions along
the viewing ray, and the estimation of the reduced light intensity for
each of those contributions. In this paper we introduce the concept
of Transmittance Function Map to represent the medium transmit-
tance in Fourier space, and Uniform Projective Space Sampling for
fast estimation of single scattering in dynamic participating media.
This method requires no precomputation and handles the interac-
tion with other scene components, potentially located within the
medium itself. Furthermore, the light sources and viewpoint can
be seamlessly moved inside or outside the medium. The scalable
nature of ray marching makes our method suitable for many ap-
plications, ranging from real-time visualization and video games
using graphics hardware to production-quality rendering on offline
renderers such as Pixar’s RenderMan R©.

In the next two sections we describe previous work addressing the
rendering of participating media (Section 2) and present key aspects
of single scattering computation (Section 3). Section 4 introduces
the bases of our rendering technique in the case of homogeneous
media. Section 5 presents our solution for factorizing reduced in-
tensity computations in the case of light scattering in heterogeneous
media. In Section 6 we discuss practical issues and suggest solu-
tions for improved performance and applicability. Our results are
presented in Section 7.

2 Related Work

The literature on efficient simulation of the interactions between
light and participating media has been enriched by numerous publi-
cations over the last decades. The base theory of radiative transport
in participating media has been introduced in [Chandrasekhar 1950]
and an extensive survey of rendering techniques for such media is
available in [Cerezo et al. 2005]. This Section presents the previous
works most closely related to our method, focusing on real-time
solutions.

Several methods provide analytic solutions to the single scattering
part of the radiative transfer equation, such as [Pegoraro and Parker
2009; Sun et al. 2005]. While effective and providing high inter-
activity, the underlying equations are built upon the assumption of
homogeneous media, and overlook the volumetric shadows effects



due to light occlusion by solid objects. Such occlusions are ac-
counted for in [Wyman and Ramsey 2008], which relies on shadow
volumes and ray marching. This method provides high frame rates,
but the shadow volume extraction may become problematic in com-
plex scenes.
The real-time rendering of animated heterogeneous materials has
been addressed in [Zhou et al. 2008]. Based on a projection of the
material into radial basis functions, this method supports multiple
scattering and image-based lighting. However, it is based on heavy
precomputations, which require the knowledge of the entire ani-
mation sequence. Another method is described in [Harris 2005],
in which volumetric clouds are represented using dynamically-
generated impostors. This technique offers real-time performance,
but only provides a coarse approximation of light scattering and
generates artifacts upon fast viewpoint movements.

Our Transmittance Function Mapping (TFM) technique makes in-
tensive use of projective texturing, which principle has been pre-
viously devised in the literature. In particular, the deep shadow
maps [Lokovic and Veach 2000] are currently a method of choice
for representing transmittance within translucent materials for pro-
duction rendering. Similar to shadow maps [Williams 1978], the
deep shadow maps store several depth records per texel, along with
an opacity value. Even using compression, an accurate represen-
tation of opacity changes requires the sampling and potential stor-
age of many values, resulting in a large memory footprint. Several
methods have been proposed to extend this concept to GPU-based
rendering [Kim and Neumann 2001; Kniss et al. 2003], with sim-
ilar advantages and drawbacks. Some of the deep shadow maps
issues have been recently addressed in [Jansen and Bavoil 2010],
which introduces Fourier opacity maps. Instead of explicitly stor-
ing depth and opacity values in each texel, the opacity of a particle
cloud is projected into Fourier space using a small set of coeffi-
cients. This method is effective and very closely related to our tech-
nique, but focuses on opacity storage instead of the computation of
actual light scattering. Furthermore, this technique works well in
optically thin particle clouds, but tends to generate ringing artifacts
in high density media. In this paper, the TFM technique addresses
both of those issues. The next Section introduces the basics of the
scattering theory underlying the remainder of this paper.

3 Single Scattering

The interaction between light and participating media is fully de-
scribed by the radiative transport equation [Chandrasekhar 1950],
covering both single and multiple scattering events. In this paper,
we focus on single scattering events in non-emissive participating
media. Such media are described at each point p by the following
functions:

• The absorption coefficient σa(p) represents the amount of in-
coming lighting which gets transformed into other forms of
energy, such as heat.

• The scattering coefficient σs(p) is the amount of incoming
lighting scattered around p.

• The extinction coefficient σt(p) = σa(p) + σs(p).

• The phase function p(p, ωout, ωin) which describes the
amount of light scattered at p from the incoming direction
ωin into outgoing direction ωout.

To define single scattering, let us first consider a point pn within
the medium, and a scattering direction ωout. Given a lighting in-
tensity Lri incoming at pn from a direction ωin (Figure 2), the
single scattering is:

Q(pn, ωout) = σs(pn)p(pn, ωout, ωin)Lri(pn, ωin) (1)

The contribution of pn to the radiance outgoing at pin is then:

Lpn(pin, ωout) = Q(pn, ωout)e
∫ pin
pn −σt(p)dp (2)

The integral part of this equation represents the light attenuation
along the path from pn to pin within the medium.
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Figure 2: Notations and principle of a classical ray-marching al-
gorithm to compute single scattering inside a participating medium
bounded by a box. A ray-marching is performed along the path
[pin,pout]; for each sample, a second ray-marching pn is per-
formed along [kin,pn] to compute the light reduced intensity.

As mentioned above, Lri(pn, ωin) describes the lighting intensity
incoming at point pn from the lighting direction ωin. This value,
known as reduced intensity, is determined from the emission prop-
erties of the light source L and the extinction coefficient of the
medium along the path from L to pn:

Lri(pn, ωin) = e
∫ kin
pn −σt(p)dp (3)

The total outgoing radiance at point pin due to single scattering
along a direction ωout is then given by integrating the contributions
of each point p between pin and pout:

L(pin, ωout) =

∫ pout

pin

Lp(pin, ωout)dp (4)

Based on those equations, we first introduce the concept of Volumet-
ric Shadow Mapping for fast computation of single scattering sim-
ulation in homogeneous media, accounting for volumetric shadows
due to solid objects. This homogeneity assumption is then raised
using our Transmittance Function Maps for fast reduced intensity
computation in heterogeneous media.

4 Volumetric Shadow Mapping

We introduce the use of shadow maps and uniform projective space
sampling for efficient computation of light shafts in homogeneous
media due to solid objects or projective textures. Our rendering
method is based on deferred shading, and is divided into three main
steps: the generation of the shadow map, the gathering of location,
and lighting information for deferred shading on solid objects, and
the single scattering computation. For the sake of simplicity, only
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Figure 3: Notations and principle of our algorithm to compute sin-
gle scattering inside an homogeneous participating medium. We
perform a single ray-marching along each viewing ray and use the
shadow map to check if the sample is lit.

spot lights and uniform shadow maps [Williams 1978] are consid-
ered in this paper, although any other light source type could be
used as long as it complies with projective textures and a shadow
mapping algorithm.

4.1 Base Algorithm

In the first step, a shadow map is generated by rendering the dis-
tances from the light source to the virtual objects into a buffer. In
the second step, the incoming lighting at each visible point of the
solid objects of the scene is computed using the shadow map and by
leveraging medium homogeneity to solve Equation 3 analytically:

Lri(pn, ωin) = e−σt‖pnkin‖ (5)

Using the surface reflectance at the visible points the output of this
second step is the reflected reduced intensity and the distance from
each point to the viewpoint. This can be easily packed into the
channels of a floating-point RGBA buffer, in which the alpha chan-
nel represents the distance value.

The third step performs the actual single scattering computation
based on the above outputs (Algorithm 1). As shown in Figure 3,
for each ray starting at C in a direction ωout through a pixel, we
first intersect the spot light cone to determine its entry and exit
points pin and pout. Those points are then tested against the dis-
tance to the nearest solid object to account for potential occlusion,
yielding actual entry and exit points. Finally, the ray between pin

and pout is sampled to solve Equation 4 numerically: for each sam-
ple point pn, we compute the light source contribution by fetching
the corresponding shadow map. If pn is unoccluded, the reduced
intensity is computed using Equation 5 and a possible projective
texture. The contribution of point pn to the single scattering is then
added using Equation 4.

While this technique is effective and easily implementable on
graphics hardware, two main aspects can be improved: the control
on the shadow map sampling, and the appearance of the partici-
pating medium outside the light cone. We solve those issues using
projective space sampling, and scattered ambient lighting.

4.2 Projective Space Sampling

The most trivial way of sampling points between the cone entry and
exit points consists in picking sample points uniformly spaced be-
tween pin and pout. However, as shown in Figure 4, the density
of actual shadow sampling points in the shadow map varies signif-
icantly depending on the viewing direction. A pathological case
is presented in Figure 4(a), in which the sampling density of the

Algorithm 1 Base Volumetric Shadow Mapping

Generate Shadow Map
Compute reflected radianceL and distance information d, ∀ pixel
for all pixels do

Determine direction ωout from C through the pixel
Fetch L and d, the reflected radiance and distance to the near-
est solid object
Intersect the corresponding ray with the light cone
if the ray intersects the cone then

Compute the entry and exit points pin and pout

if d < ‖Cpin‖ then
return L

end if
if d < ‖Cpout‖ then

pout = C+ dωout

end if
Lscat = 0
for all sample points pn along pinpout do

Fetch the corresponding shadow map texel
if pn is unoccluded then
Lscat+ = single scattering contribution of pn

end if
end for
Compute Lreduced = Le−σt‖pinpout‖

return Lscat + Lreduced
else

return L
end if

end for

C

L

(a) In World space

C

L

(b) In Projective Map space

Figure 4: Uniform sampling in world space (a) involves precision
issues due to the varying projective map sampling rate along the
rays. We overcome this problem by uniform sampling in projective
map space (b), providing a constant shadow sampling quality along
the entire rays.

shadow map is scarce near the viewpoint, and increases as the dis-
tance to the viewpoint gets higher. Consequently, obtaining a satis-
fying sampling quality near the viewpoint implies an unnecessary
oversampling in farther parts of the medium.

To provide an intuitive quality control, we propose to maintain a
constant sampling quality over the shadow map using projective
space sampling: the entry and exit points pin and pout are first
projected into the shadow map space, yielding p′in and p′out. Then,
projected sample points p′n are obtained by uniformly subdividing



the segment p′inp
′
out. As shown in Figure 4(b), the sample points

p′n are then projected back in world space to compute their scatter-
ing contribution.

This method is particularly useful in scenes containing high fre-
quency details, or when using high resolution projective textures
as this directly links the number of samples to the actual sampling
rate of the projective texture. As shown in Figure 5, our projective
space sampling tends to capture the details of the projective maps
with more accuracy than classical sampling in world space, espe-
cially when the lighting and viewing directions are nearly collinear.

4.3 Scattered Ambient Lighting

A common artifact of volumetric methods is the lack of coherent
scattering and attenuation effects outside the light cone. In the real
world, such effects are due to multiple scattering events in the par-
ticipating medium, and global illumination. Many real-time ap-
plications approximate global illumination effects using a simple
ambient lighting term, added indiscriminately to each shaded point.
As our method only handles single scattering and direct lighting,
we propose to extend the principle of ambient lighting to homoge-
neous participating media. Let us recall Equation 2 which describes
the single scattering:

Lpn(pin, ωout) = Q(pn, ωout)e
∫ pin
pn −σt(p)dp (6)

We introduce a scattered ambient lighting term La corresponding
to the radiance reaching every point in the medium from every di-
rection. In this context, the integral can be solved analytically over
a path from C to a point p within the medium:

Lp,ωout =
σs
σt
La(1− e−σt‖Cp‖) (7)

As this formulation is coherent with the definition of single scat-
tering in [Chandrasekhar 1950], scattered ambient lighting can be
seamlessly combined with the algorithm described above as shown
in Figure 6.

In this Section, we presented our method for fast and efficient sin-
gle scattering simulation. We leveraged the assumption of homo-
geneous participating media to compute the reduced intensity of
the light source analytically. The next Section introduces transmit-
tance function maps to raise this assumption, hence extending our
approach to participating media with varying opacities.

(a) No ambient lighting (b) Scattered ambient lighting

Figure 6: Scattered ambient lighting provides a coherent attenua-
tion outside the light cone.

5 Transmittance Function Mapping

The usual bottleneck of ray-marched scattering simulations in het-
erogeneous participating media is the computation of the reduced

intensity Lri at each sample point. This reduced intensity can be
obtained by ray-marching the medium from the sample towards
the light source or using projective texturing techniques such as
deep shadow maps [Lokovic and Veach 2000] or Fourier opacity
maps [Jansen and Bavoil 2010] for higher performance.

The principle of transmittance function maps directly builds upon
the volumetric shadow mapping technique described in the previ-
ous section: our aim is to enrich the shadow map with additional
information regarding light attenuation along each light ray. To this
end, in a way similar to the deep shadow map approach, we sample
the medium along light rays. However, instead of explicitly storing
a piecewise linear combination of opacity samples, we choose to
leverage the continuity and relative smoothness of the transmittance
function and project it into a small set of coefficients of a functional
basis. Therefore, given a set of basis functions {Bj(x)}j∈N, the
transmittance function T (x) at a distance x is:

T (x) =
∑
j

cjBj(x) (8)

cj =

∫
T (x)Bj(x)dx (9)

Algorithm 2 Transmittance Function Map generation

Set the viewpoint as for shadow map generation
for all pixels do

Set cj = 0 ∀j ∈ [0..m]
Determine direction ωin from C through the pixel
Fetch d, the distance to the nearest solid object
Intersect the ray with the bounding box of the medium
if the ray intersects the box then

Compute the entry and exit points kin and kout

if d < ‖Lkin‖ then
return cj = 0 ∀j ∈ [0..m]

end if
if d < ‖Lkout‖ then

kout = L+ dωin

end if
for all sample points kn along kinkout do

Fetch density at kn and compute transmittance Tn
δK = ‖kn−1kn‖
for all j ∈ [0..n] do
cj+ = Tn cos(

jπ
2M

(2x+ 1))δK
end for

end for
return {cj}j∈[0..m]

else
return cj = 0 ∀j ∈ [0..m]

end if
end for

In practice, we solve Equation 9 by marching through the medium
and performing numerical integration (Algorithm 2). While the
transmittance function could be projected into any functional basis,
we chose the Discrete Cosine Transform with regards to its ease of
evaluation and to the quality of the reconstructed signal even with a
small set of coefficients:

Bj(x) = cos(
jπ

2M
(2x+ 1)) (10)

This set of coefficients can be simply stored in multiple floating-
point render targets right after the shadow map generation.

The final rendering follows Algorithm 1. However, instead of com-
puting the reduced intensity analytically, we fetch the transmittance



(a) (b) (c)
Figure 5: Homogeneous cube lit by a projective texture. The reference image (a) is obtained by a dual ray-marching with 1000 sample per
view ray, the image (b) is obtained by a ray-marching in world space with 10 samples, and the image (c) is obtained by a ray-marching in
shadow map space with 10 samples.

function map coefficients in the corresponding texel and reconstruct
the transmittance at each sample point. This transmittance is then
multiplied by the light intensity to obtain the reduced intensity.

This method provides a simple and accurate way of representing the
variations of light attenuation in a heterogeneous medium using a
small set of projection coefficients in the DCT basis. However, such
coefficients have to be computed and stored for each represented
wavelength, hence requiring a significant amount of memory space
and bandwidth. Also, as pointed out in [Jansen and Bavoil 2010],
the representation of transmittance or opacity in a functional basis
results in potential ringing artifacts if the medium features high den-
sities. The next Section provides simple solutions to those issues,
hence improving the efficiency and genericity of our method.

6 Discussion

6.1 Wavelength Dependence

As described in the previous Section, the transmittance function
must be projected and evaluated for each represented wavelength,
namely RGB in most contexts. Even using only 4 coefficients per
texel, the transmittance function map generation would output 3
floating-point RGBA textures which, in turn, will be sampled dur-
ing rendering. We propose to reduce the memory footprint of our
method by reducing the scope to a subset of participating media, in
which the absorption and scattering coefficients are:

σa(p) = D(p)σa and σs(p) = D(p)σs (11)

where D(p) is a scalar medium density, and σa, σs are constant
over the entire medium. Basically, the considered participating me-
dia is made of a single material with varying density. This is partic-
ularly useful in the context of cloud and smoke rendering. Within
this context, we reformulate the transmittance function as follows:

T (kn) = e
−

∫ kn
kin

σt(k)dk

= (e
−

∫ kn
kin

D(k)dk
)σt (12)

Therefore, instead of projecting the entire transmittance function,
we only project the wavelength-independent part of the above equa-
tion, that is

Tproj(kn) = e
−

∫ kn
kin

D(p)dp (13)

The actual, wavelength-dependent transmittance can is then:

T (kn) = (Tproj(kn))
σt (14)

The advantages of this technique are twofold: on the one hand,
the number of required coefficients is reduced, hence reducing the
memory space and bandwidth. On the other hand, once the trans-
mittance map is generated, the wavelength-dependent scattering
and absorption coefficients can be modified on-the-fly without re-
quiring any update in the transmittance map. This aspect is of
particular importance in the context of offline production render-
ing: avoiding the regeneration of the transmittance map allows the
medium designers to get a very fast feedback on changes of scatter-
ing properties, hence speeding up the design workflow.

6.2 High Density Medium

The use of basis functions provides a compact and smooth represen-
tation of the transmittance function. However, as also pointed out
in [Jansen and Bavoil 2010], such methods tend to generate arti-
facts in the case of density variations in optically thick participating
media. The oscillations in the reconstructed signal yield ‘stripping’
effects, as shown in Figure 7. Based on the following observations
we introduce a density weighting to overcome this problem:

• artifacts are nearly invisible in optically thin media

• The transmittance values remain within [0, 1]

• The transmittance function is a continuous, decreasing func-
tion with respect to distance

Based on these observations, our aim is to losslessly smooth out
the represented signal, so that artifacts would be less likely to be
visible. This is equivalent to decreasing the amount of variations
in the represented transmittance, that is, reducing the amplitude of
the derivative of the signal. Let us consider a function f(x) meeting
the same characteristics as the transmittance function, and make the
following assumption:

∂f(x)
1
α

∂x
<
∂f(x)

∂x
(15)

where α > 1 is an arbitrary scalar value. To validate this assump-
tion, we aim at proving that increasing α results in decreasing ∂f

∂x
.

The derivative of f after exponentiation is:

∂f(x)
1
α

∂x
=

1

α
f(x)

1
α
−1 ∂f(x)

∂x
(16)



(a) Reference Image - Dual ray-marching (b) 16 DCT coefficients without DW (c) 16 DCT coefficients with DW=10
Figure 7: Compared to a reference solution (a), density weighting (DW) drastically reduces the noticeability of ringing artifacts in dense
media.

The relationship between this derivative and α can be expressed
by its derivative with respect to α. If the hypothesis is true, the
derivative below is negative.

∂2f(x)

∂α∂x
=

∂

∂α
(
(f(x)

1
α
∂f(x)
∂x

)(α+ ln(f(x)))

f(x)α3
) ≤ 0 (17)

The function f(x) being positive and decreasing, we deduce
f(x)

1
α ≥ 0 and ∂f(x)

∂x
≤ 0 ∀x. Consequently, f(x)

1
α
∂f(x)
∂x
≤ 0

and f(x)α3 ≥ 0.
Therefore, to validate the hypothesis we must have:

α+ ln(f(x)) ≥ 0 ∀x ⇔ max f(x) ≥ e−α (18)

In our context f(x) is the transmittance function. In optically thick
media, the transmittance function satisfies the above equation on
most of its domain, making an exponentiation with a high α par-
ticularly useful. Conversely, optically thinner media would benefit
from lower values of the factor α.
Based on this fact, we insert this user-defined density weighting α
in our computations by rewriting the transmittance function as:

Tw(kn) = e
−

∫ kn
kin

σt
D(S)
α

dS (19)

The actual function is then obtained directly using the exponential
property:

T (kn) = (Tw(kn))
α (20)

As shown in Figure 7(c), this factor allows us to significantly reduce
the artifacts even in the case of low albedo media such as smoke.

7 Results

The techniques presented in the previous sections describe a full
featured solution for fast rendering both homogeneous and het-
erogeneous participating media. This section illustrates some re-
sults obtained using an Intel Xeon 3.6GHz and a nVidia GeForce
GTX480 GPU for real-time rendering using OpenGL, and Pixar’s
RenderMan R© for production-quality rendering.
In order to compare objectively our images to these references, we
use the SSIM (Structural SIMilarity) measure as defined by [Wang
et al. 2004]. The SSIM scores range from -1 to 1, 1 being only
reachable while comparing two identical images.

Pin

Pout

(a)

Real Signal
DCT - 8 Coefficients
DCT - 16 Coefficients

Number of Coefficients

RMS

(c)

Transmittance

Pin Pout

(b)

Figure 8: The transmittance function along a path in a medium (a)
is projected into a set of coefficients (b). Note that the reconstruc-
tion error drops rapidly when increasing the number of coefficients.

7.1 Volumetric Shadow Mapping

Our approach offers real-time performance, as shown in Figure 9.
The images were rendered at a resolution of 1280 × 720 using
10242 shadow maps and projective textures. The capture of pro-
jective texture and shadow details is achieved using 200 marching
steps per pixel for the final rendering. The same algorithm has been
implemented as a RenderMan shader for rendering the underwa-
ter city of the movie GI-Joe: Rise of Cobra, featuring ∼3000 light
sources: our method seamlessly supports an arbitrary number of
light sources, provided the light cones are sampled for each travers-
ing ray. In this case, depending on the geometry and lighting com-
plexity, the number of marching steps could be reduced to ∼50,
hence allowing the scene designers to insert additional light sources
by reducing the per-light computational costs.

7.2 Transmittance Function Mapping

The Transmittance Function Mapping method offers real-time per-
formance on 1283 volumetric data described by density values (Fig-
ure 1(b)), and interactive performance on higher definition volumes
(Figure 1(a)). As shown in the accompanying video, the rendered
volumes can be arbitrarily animated as our method does not re-
quire any precomputation. In the remainder of this section, we
compare our method with reference images obtained using a brute
force ray marching algorithm to estimate the transmittance func-



Figure 9: Volumetric Shadow Mapping - 200 steps - 30 fps

Smoke - 1283 voxels - Figures 10 (a-d)
FPS SSIM PSNR

DW No DW DW No DW
TSM 4 coeffs 15.10 99.73% 87.12% 54.52 17.64
TSM 8 coeffs 14.78 99.74% 95.49% 58.58 25.50
TSM 16 coeffs 12.18 99.74% 95.35% 60.02 25.60

Bunny - 2563 voxels - Figures 10 (e-h)
FPS SSIM PSNR

DW No DW DW No DW
TSM 4 coeffs 14.41 98.68% 79.77% 35.61 16.74
TSM 8 coeffs 14.20 99.03% 82.57% 43.27 15.07
TSM 16 coeffs 13.98 99.05% 77.55% 46.19 14.30

Table 1: Objective comparison between reference images and the
TFM technique with and without Density weighting (DW = 10) us-
ing 100 samples/ray and a 10242 Transmittance Function Map.

tion. Note that closely related methods such as [Jansen and Bavoil
2010; Lokovic and Veach 2000] aim at representing the opacity of
a medium, and generally overlook the effects of light scattering. As
the results obtained with such methods are intrinsically different
from ours, we do not compare them with our approach.

7.2.1 Number of coefficients

The number of projection coefficients for the transmittance func-
tion has a significant impact on the quality of the reconstruction
(Figure 8). An insufficient number of coefficients yields an overly
smooth reconstruction, hence missing higher frequency details in
the volume. As shown in Table 1, our Transmittance Function Map-
ping technique provides satisfying results, both in subjective and
objective terms using the SSIM and PSNR measures. In our tests,
the images generated using a Transmittance Function Map contain-
ing at least 8 coefficients per texel are objectively almost indistin-
guishable from the reference solution. Also, while a lower number
of coefficients yields images objectively different from the ground
truth, such images remain visually plausible (Figure 10(b,f)). Com-

bined to the inherent scalability of the ray marching algorithm, this
allows our algorithm to be effective on a wide range of graphics
hardware by adjusting the marching steps and the number of coeffi-
cients. Also, the Bunny volume features sharp density changes, as
well as large zones with constant density. Even though this volume
could be considered a pathological case for our technique, Figure
10 and Table 1 show that differences with the reference images re-
main very small.

8 Conclusion

Interactive simulation of complex participating media is a complex
matter with no simple solutions. We proposed a full-featured ap-
proach to single scattering in both homogeneous and heterogeneous
media using volumetric shadow mapping and attenuation function
maps. Based on projective texturing and a Fourier representation
of transmittance data, our method does not rely on any assumptions
on the medium or on the lighting and viewing conditions. As this
paper describes a scalable approach to the single scattering simula-
tion problem, the introduced solution finds its use in both real-time
and production rendering, making it suitable for a wide range of
applications such as video games, asset previewing, or final post-
production rendering. Future work will particularly consider the
extension to the simulation of multiple scattering events in Fourier
space based on the transmittance function map. Also, we would
like to widen the concept of transmittance function maps to image-
based lighting for enhanced realism.

Figure 11: Cloud 600×200×400 - 7fps
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