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Figure 1: Our approach for adaptive streaming at multiple levels: planet-scale structuration, visibility-based occlusion culling, multi-
resolution meshes and textures, and adaptive reconstruction of procedural models.

1 Introduction

As the trend of online multi-user worlds gets more and more mo-
mentum, such worlds usually require heavy infrastructures both in
terms of hardware and software: servers often manage the entire
world simulation, and hence limit the number of simultaneous con-
nections. The data exchanges are performed using proprietary pro-
tocols, requiring specific server applications and the use of ded-
icated ports which leads to potentially complex proxy issues for
connection. Also, online virtual worlds usually target specific plat-
forms (e.g. PC for Second Life, or game stations for Playstation
Home), and even reduce the use of the world to a subset of avail-
able platforms due to bandwidth or hardware requirements.

We propose an approach for adaptive streaming of online multi-
user virtual worlds, using generic transfer protocols and a unified
representation of the worlds usable on an arbitrary wide range of
platforms. HTTP/1.1 natively supports two crucial features for data
streaming: persistent connections and chunked access to files. We
leverage those capabilities to avoid the need for specific server soft-
ware, communication ports and transfer protocols. Also, a side ef-
fect of the use of HTTP/1.1 is an enhancement of the usability:
most current proxies support this protocol, hence sparing the user a
specific tuning of proxies and firewalls.

Based on those simple capabilities we propose unified representa-
tions of arbitrarily large virtual worlds based on X3D, as well as
methods for adaptive streaming and interaction regardless of the
network bandwidth or capabilities of the client hardware.

2 Overview

Our main target is a client-independent representation of the virtual
worlds, client-adaptive data streaming and decentralized multi-user
interaction. To this end, we first address the problem of the effi-
cient representation of planet-sized virtual worlds, bearing in mind
the constraints of HTTP/1.1 [Fielding et al. 1999]. As shown in
Figure 1 we first use a global structuration for the largest features of
the world such as the planetary terrains. At a smaller scale, efficient
occlusion culling is performed using cell-based space partitioning.

∗e-mail:jean-eudes.marvie@technicolor.com
†e-mail: pascal.gautron@technicolor.com
‡e-mail: pascal.lecocq@technicolor.com
§e-mail: olivier.mocquard@technicolor.com
¶e-mail:francois.gerard@technicolor.com

Visible objects are then represented as multi-resolution meshes and
textures. Also, further optimizations are obtained using procedural
modeling of specific object types such as buildings or plants.

Our approach is based on a click-and-play approach: we focus
on direct data streaming to avoid the need for prefetching a large
amount of data before entering the virtual world. To ensure suffi-
cient reactivity on data fetches, the servers can be preferably located
within the physical neighborhood of the users.

Once the virtual environment is represented, we consider the im-
mersion and interaction of multiple users. Unlike most existing ap-
proaches, we relieve the server from the synchronization and simu-
lation tasks. To this end, we designed a novel X3D node for a de-
centralized peer-to-peer synchronization, potentially dependent on
the geographical proximity of the users in the virtual world: regard-
less of their physical location in the real world, each user must be
synchronized with the users within a close neighborhood in the vir-
tual world, while potentially neglecting synchronization with more
distant users for performance (Figure 2).

Figure 2: Overview of our synchronization strategy: the data rep-
resenting the virtual world are streamed by geographically close
servers, while users in the same neighborhood (here, red and green
zones) of the virtual world are connected on a peer-to-peer basis.
One or more users can also take the role of yellow pages server to
allow newcomers to connect the virtual world. All the communica-
tions and transfers are performed through HTTP/1.1.



3 World delivery

The usual delivery scheme for online virtual worlds starts with a
massive download of resources files, including most of the 3D mod-
els, as well as texture maps. Before entering the virtual world,
the user must not only wait for the necessary download to be per-
formed, but also have a sufficient amount of available storage.
While current desktop computers usually contain very large hard
disks, this is not the case for smaller clients such as handheld de-
vices. Also, this pre-downloaded resource package must contain
the resources representing the entire virtual world. In the context
of high quality, planet-sized worlds, the size of the package be-
comes prohibitive even using broadband connections and high-end
computers. This delivery scheme is typically used in World of War-
craft1.

If the virtual world targets several platforms (e.g. PCs, tablets,
mobile phones, etc.), those problems are partially overcome by
providing resource packages adapted to each platform. For ex-
ample, a package targeting low-end handheld devices would fea-
ture degraded textures and models, while high-end gaming plat-
forms would benefit from a larger, more detailed dataset. However,
this approach requires replicating resource packages for each tar-
get platform, potentially leading to massive storage waste on server
side. Furthermore, the dataset is not dependent on the current avail-
able bandwidth: for example, let us consider a high-end laptop
computer connected using a 3G key. The user needs to either take
a very long time to download a resource package adapted to his
hardware, or access the virtual world more rapidly by choosing a
degraded representation of the world. In this latter case, the user
must re-download a larger resource package when eventually get-
ting access to a higher bandwidth such as a WiFi connection.

The issue of resource availability can be addressed in several ways.
The approach used in Second Life2 is designed for a world subdi-
vided into independent islands. Before entering an island the client
downloads a minimal dataset corresponding to the objects visible
from the entry point in the island. Further data are downloaded
afterwards during navigation regardless of visibility or navigation.
The simulation of the interaction between users is performed on
server-side, hence limiting the number of simultaneous clients on a
given island.

In [Cavagna et al. 2006; Royan et al. 2007] the virtual world is
uncentralized, i.e. entirely distributed among the participants and
available using a peer-to-peer approach. The lack of centralized
server allow the users to create persistent virtual worlds without the
need of dedicated infrastructure. However, problems may arise due
to the high latency of P2P approaches. Furthermore, the upload
link on client-side tends to be small (e.g. 1Mbps) on consumer
connections.

Our approach combines P2P and server-based storage: the re-
sources describing the world are stored on the server, while the in-
teraction and synchronization are performed on client-side using a
P2P approach. Instead of downloading resources beforehand, we
use adaptive streaming to provide the user with a click-and-play
experience at all levels: a global structuration of the world, in the
spirit of X3D Earth, provides a progressive loading scheme for parts
of the virtual world. At a finer level, we propose using an accurate
management of visibility using cell-based Potentially Visible Sets.
Finally, based on available bandwidth, memory and visual impor-
tance of objects, we leverage continuous levels of details for 3D
meshes as well as multi-resolution texture maps and adaptive pro-
cedural reconstruction for a complete adaptive delivery pipeline for

1http://battle.net/wow
2http://secondlife.com/

virtual worlds (Figure 3).

3.1 Global structuration

The virtual world is structured differently depending on the current
distance between the ground and the user. As shown in Figure 4
the main elements of the ground infrastructure, which are visible
from large distances, are represented using discrete levels of detail
stored in separate files. This LOD management builds upon the
Geospatial component of the X3D specification, and is detailed in
Section 3.1.1. When the viewpoint gets closer to the terrain, an-
other structuration based on visibility accounts for highly occluded
environments such as cities (Section 3.1.2). The terrain itself is rep-
resented using the progressive techniques described in Section 3.2.

3.1.1 X3D Earth

The global structuration for streaming purposes could be performed
using Inline nodes dynamically combined using scripting. To
improve both design workflow and computational efficiency, as
well as numerical precision, this structuration can be more easily
performed using the Geospatial component of the X3D specifica-
tion, also known as X3D Earth. This component targets the repre-
sentation of planet-scale GIS data as well as navigation, user track-
ing and rendering. The GeoLOD node provides a quadtree-based
representation of a terrain using several levels of detail. Each node
of the tree stores the URL of the file containing its corresponding
level of detail and the URLs of files describing finer levels of the
tree. The files are loaded on-demand using HTTP file reads depend-
ing on the distance between the nodes and the current viewpoint.
The structure also discards distant and invisible nodes, leading to a
global stream consumption over the planetary surface.

If we consider a full-featured virtual world seen from the ground
level, the approach introduced in X3D Earth would trigger file
loads for every node in the neighborhood of the user, regardless
of the actual visibility of the nodes. If the models comprised within
those nodes are highly detailed, the navigation would be frequently
stopped or incomplete while loading the fully detailed description
of elements of the world even though they are currently invisible.
Besides the loss of interactivity or visual quality, such detailed mod-
els may also not fit in the memory of the client.

Based on those observations, we use a finer structuration level based
on visibility relationship between smaller elements of the virtual
world so that node fetches are only issued advisedly.

3.1.2 Visibility structuration

When the viewpoint is located near the ground level, we switch the
world representation to optimize the data streaming and rendering
performance using visibility information. To this end, we subdivide
the scene into a grid of cells as shown in the bottom level of Fig-
ure 4. In addition of the list of objects contained in the cells, each
cell also carries information describing the set of neighboring ele-
ments which are potentially visible. More precisely, each cell stores
its set of potentially visible cells, a set of potentially visible objects
and the set of objects actually contained within the cell. The cells
are represented as a separate files, and can be fetched using regular
HTTP file requests.

This space partitioning can be easily performed using X3D exten-
sions such as [Marvie and Bouatouch 2004]. This extension has the
advantage of minimizing the number of file downloads required to
render the world from a given region in space.

3http://www.openstreetmap.org/



Figure 3: The combination of terrain structuring and visibility op-
timization with progressive objects and textures allows for a contin-
uous adaptive navigation experience in planet-sized virtual worlds,
with visual features ranging from overall country limits to detailed,
geolocalized street furniture. In this example data are extracted
from OpenStreetMap3 (127GB database in March 2010) and con-
verted into X3D Earth representation. The buildings are generated
using adaptive procedural reconstruction on client-side using the
building footprints contained in the OSM database.

Figure 4: The altitude of the viewpoint drives the management of
the levels of detail: at large distances we use the file-based levels of
detail provided by the GeoLOD nodes of X3D. At ground level we
use a more optimized representation of the world based on visibility
relationships between cells of a uniform grid. The terrain itself is
managed separately using dedicated streaming techniques based on
HTTP/1.1 chunk reads.

The navigation within the cell structure is made possible by in-
troducing a new sensor node, called CellTracker (Figure 5).
Given the URLs of the entry gates of the structure, this node tracks
the viewpoint and communicates with the current cell to fetch the
visible cells in the neighborhood. The visibility streaming mech-
anism is completed with data prefetching and cache management
techniques: an oracle determines and fetches the next potentially
visited cells using viewpoint tracking and motion prediction. Con-
versely, formerly visible cells are discarded based on a distance cri-
terion computed on the adjacency graph of the cells.

CellTracker : X3DSensorNode {
MFString [in,out] entryCells [""]

}

Figure 5: Prototype of the CellTracker node used to track the
current location of the user with respect to the cell-based structure.

The transition from the GeoLOD-based structure to the visibility-
based representation occurs when navigating through the leaves of
the GeoLOD hierarchy. This leaf level contains the list of adja-
cent cells, allowing the system to update the CellTracker node and
quickly determine the entry point within the visibility-based struc-
ture. This determination can be further optimized if the cells define
a uniform, axis-aligned grid. Once the set of potentially visible ob-
jects has been determined, our system adaptively fetches and ren-
ders the corresponding geometric and photometric structures.

3.2 Adaptive Objects and Textures Streams

Even when the set of potentially visible objects is determined, load-
ing such objects in full resolution may impact the interactivity of the
world and potentially consume prohibitive amounts of memory. To
avoid such issues, we determine overall budgets for network band-
width, texture memory and polygon count. The computation of
those budgets relies on two principles: real-time monitoring of key
performance indicators and statically defined configuration param-
eters. The former considers the current per-frame render time, the
number of visible polygons and the amount of graphics memory
used for texture storage. The latter is a set of user-defined values
such as a target frame rate or the maximum amount of memory
dedicated to textures. Results and the budget management are illus-
trated in the accompanying video.



Once the overall budgets for bandwidth, polygon count and texture
memory have been allocated we split this budget over the set of po-
tentially visible objects. The budget share allocated to each object
is defined by an estimate of its current visual importance, typically
using pixel coverage of object projections (easily performed using
occlusion queries on graphics hardware). Depending on the varia-
tions of its allocated budget, a node may trigger unloading of excess
data, request the server to provide additional levels of details, and
update its internal structures.

In this approach many nodes may simultaneously issue requests for
additional geometric or texture details. Using HTTP/1.0 [Berners-
Lee et al. 1996], each request would have to wait for the previous
request to be fulfilled before being issued. The only alternative
would be to establish a separate connection for each request, which
would also introduce much delay in the responses. HTTP/1.1 in-
troduces support of persistent connection, chunk reads and pipelin-
ing, in which multiple requests can be issued successively without
waiting for responses. These mechanisms allow each node to issue
requests without any overhead or stalls.

Building upon those characteristics we use methods for adaptive
streaming of multi-resolution meshes and textures. In each case we
represent the various levels of details using contiguous chunks of
data in a single file. Each file starts with a first level of detail along
with metadata providing the location of the next levels in the file.
Figure 6 illustrates this organization in the case of a binary tree in
which the metadata indicate the offsets between the current node
and each of its children.

Figure 6: Representation of a binary tree compliant with HTTP/1.1
chunk reads: each node stores its data as well as information re-
garding file offsets towards each of its children.

3.2.1 Multi-resolution meshes

Many applications use several levels of detail to represent a given
object for performance purposes: if an object has a small visual
importance, the system uses a low-resolution representation of the
object. Conversely, visually important objects benefit from higher
quality representations. This technique, known as discrete levels of
detail, is typically supported by the LOD node of the X3D specifi-
cation: based on a set of distance thresholds associated to the cor-
responding independent object representations, the system chooses
the representation adapted to the current distance between the view-
point and the user. This technique effectively reduces the polygon
count for visually unimportant objects, hence improving the over-
all rendering performance. However, due to the lack of specific
streaming approaches, the LOD node requires transmitting all the
levels of detail prior to rendering. This problem can be addressed

using a combination of Inline nodes and specific scripts, at the
expense of computational efficiency. Also, those levels are stored in
independent files: a given object is then represented multiple times,
resulting in bandwidth waste due to redundancies.

On the rendering side, let us consider an object advancing towards
the viewer. In this case, each time the object passes a distance
threshold, the LOD node switches the object representation to a
higher level. If difference of polygon count between two succes-
sive levels is too high, the level switch becomes visible, yielding
annoying popping artifacts. This problem can be overcome using
more levels of detail, resulting in higher visual quality at the cost of
memory and bandwidth consumption.

Instead, in the spirit of [Hoppe 1996], we use a continuous tech-
nique: a single representation of the geometry of the objects is en-
coded to provide continuous levels of details and progressive trans-
mission capabilities. Object meshes can be progressively refined
with a per-vertex granularity, reducing the popping artifacts to a
minimum. The file layout for a progressive mesh (Figure 7) fol-
lows the global structure described above, in which each vertex split
operation is considered as a separate level of detail. The structure
then contains as many levels of detail as available split/merge rules.
Also, the size of such rules is constant, avoiding the need for storing
offsets towards the next level of detail.

While slightly different from the generic structure, this layout is
particularly adapted to the dynamic allocation of polygon and band-
width/latency budgets: if an object already contains n faces and is
allowed n+m for the next frame, the system simply issues a chunk
request for m times the size of a split rule. Note that the adapta-
tion is performed not only on the polygon budget, but also on the
availability of the network link: if the polygon budget recommends
adding m faces while the bandwidth budget allows for m−k faces,
then only m− k faces are downloaded and added to the object.

When rules are downloaded and applied to the mesh on client-side,
the file pointer gets advanced to the next available rule. Conversely,
if the budget for an object is reduced, the geometry is degraded and
the pointer is decremented by the number of discarded rules. The
photometry of the objects is then adjusted using multi-resolution
textures.

Figure 7: A progressive mesh is represented by its base represen-
tation, followed by a sequence of fixed size split/merge rules. The
addition of n vertices is simply performed by requesting the server
to send a file chunk of n times the size of a rule, starting from the
position of the last chunk request.

3.2.2 Multi-resolution textures

Many approaches including [Shapiro 1993; Said and Pearlman
1996; Hewlett-Packard 1997; Marvie and Bouatouch 2003] have
been devised for efficient multi-resolution representation and
streaming of texture maps. Among them, zerotree based techniques
[Shapiro 1993] such as JPEG2000 [ISO/IEC FCD 2004] feature
scalable progressive transmission based on resolution or PSNR.
However, this resulting compacity comes at the expense of com-
putational efficiency for decoding.

Building upon the ideas of low-redundancy and chunk reads, our
approach is based on the tiled pyramidal format described in [Mar-



vie and Bouatouch 2003]. This format can be seen as a progres-
sive PNG format dedicated to texture maps. It provides an efficient
representation for progressive texture maps allowing for dynamic
loads and unloads of mipmap levels. As shown in Figure 8, this file
format first stores a base dataset representing the texture map. For
example, resolutions from 1×1 to 32×32 can be stored in this first
file chunk. The higher resolution is represented in the next chunk
as follows: Each texel of the lower resolution is subdivided into 4
subtexels. The values of 3 subtexels are explicitly stored, while the
fourth is reconstructed using the values its neighbors and the lower
resolution texel, as well as a small residual value compensating the
error induced by integer arithmetics. A given mip level is then the
set of additional subtexels plus the residual values. Further lossless
compression is achieved using per-level ZIP compression.

Our approach is however not limited to [Marvie and Bouatouch
2003]: the same principle can be applied using classical formats
such as interlaced GIF (Figure 9) or PNG. Also, alternative repre-
sentations such as core JPEG2000 could also be slightly adapted
to fit this chunked-based streaming scheme [Deshpande and Zeng
2001].

Figure 8: Progressive textures are encoded by chunks representing
partial mip levels, and losslessly reconstructing the missing texels
(in red) on client-side.

Figure 9: Streaming can also be performed using existing progres-
sive image file format, such as interlaced GIF. This format contains
four levels of details: the first level contains the first line of each
four-row blocks of the image, the second level the second line etc.
Each level can be downloaded as a file chunk through HTTP/1.1.

In our context the advantages of [Marvie and Bouatouch 2003]
are multiple: first, the representation corresponds directly to the
mipmaps structure of graphics hardware. Consequently, this ap-
proach avoids the need for generating the mip levels, relieving the
CPU or GPU from the filtering task. Also, the reconstruction of
the texels is performed using simple bitwise operations, particu-
larly suited to low-end terminals. In counterpart, JPEG2000 would
provide better compression at the transmission level at the expense
of decompression complexity, especially for regenerating mipmap
levels. However, note that this complexity can be reduced using
index tables embedded within the JPEG2000 files.

At render time, the memory budget allocated to each texture is de-
termined by the system based on the overall number of visible tex-
ture maps within the set of potentially visible objects, as well as
visual importance cues such as the coverage hints of the texture-
mapped objects. If the currently available resolution is not suffi-
cient, the system issues a file chunk request to obtain the additional
information required to build the next resolution level.

3.2.3 Multi-resolution terrains

The geospatial component of X3D provides a way of representing
terrain elements using discrete levels of detail stored in separate

files. While this approach proves effective, successive levels of de-
tail contain redundant data, resulting in a waste of bandwidth. Many
alternatives have been proposed to address redundancy issues, such
as [Hoppe 1998; Cignoni et al. 2003; Losasso and Hoppe 2004;
Pouderoux and Marvie 2005; Lerbour et al. 2009; Lerbour et al.
2010]. Our system implements the approaches by [Lerbour et al.
2009] to meet our needs in terms of progressivity, computational
efficiency and ease of transmission. As described above in the con-
text of progressive textures, the main idea is the addition of data on
top of lower-resolution levels to progressively reconstruct the full
representation of the terrain.

Figure 10: Each level of the terrain representation contains three
non-redundant levels of detail. The first inner LOD (black dots) is
simply the highest inner LOD of the previous level, and is thus not
explicitly stored for levels higher than 0.

The elevation of the terrain is encoded within a tree data structure,
for example a quadtree as illustrated by Figure 10. Each node of the
tree contains three complementary levels of detail. The first LOD of
inner nodes is implicitly provided by the last level of their parents
to avoid redundancy. Each node of the tree is stored within chunks
of the main terrain file on the server, and fetched on-demand by the
client. This technique provides the user with an immediate access
to the terrain, whose representation gets refined during navigation
using simple chunk reads.

The rendering of the terrain also complies with the dynamic budget
allocation: the tree is refined to meet the constraints induced by the
polygon and bandwidth/latency budgets. Depending on the appli-
cation, the budget allocated to each node can be based on several
criteria such as the distance to the viewpoint, the screen projec-
tion of the node or the surface roughness. The adaptivity of the
photometry of the terrain is ensured by maintaining a similar tree
containing texture information [Lerbour et al. 2010].

3.3 Procedural models

The techniques described above aim at representing and streaming
progressive meshes and texture maps. While compact and easily
streamable, further performance can be achieved for specific ob-
jects. For example, many buildings can be represented by a set of
construction rules, or grammar, and reconstructed at any level of de-
tail. Such grammars tend to be very small in terms of storage, and
a single grammar can be reused to generate infinite variations of a
given building type. This technique known as procedural modeling
is often used at the design stage to create large environments such
as cityscapes, which are then stored as regular meshes for streaming



and rendering.

In [Marvie et al. 2003], the authors avoid the need for explicit ge-
ometry generation prior to transmission: the full grammar is first
transmitted to the client using HTTP file read. Then, depending
on available resources of the client, the grammar is developed dy-
namically to generate the appropriate geometry level (Figure 1(e)).
This technique called procedural LOD control allows for drastic
bandwidth savings and implicitly adaptive geometry, proving par-
ticularly useful for the navigation in complex urban environments.

3.4 Servers Localization

The world delivery scheme described in this paper is fully adap-
tive to the client capabilities and the network bandwidth. However,
as any network-based solution, our approach benefits from low la-
tencies and high upload bandwidth for the servers. Therefore, the
system will perform best using replicated data centers spread in
multiple locations of the real world, and chosen depending on the
current location of the clients. Note that the servers only host the
world resources, ignoring the presence and synchronization of the
users. Consequently, the replicated servers need to be synchronized
only if the world resources are changed, which is usually a non-
intensive task. The interaction of the users is then performed using
a decentralized approach.

4 World Synchronization

4.1 Existing Technologies and Related Standards

The challenge of massive multi-user synchronization mostly con-
sists in finding an optimal balance between heterogeneous network
latencies and bandwidths, capabilities of the client hardware, as
well as the level of interaction of each users. Most existing syn-
chronization techniques are either fully centralized or fully decen-
tralized.

Centralized architectures are generally built upon a client/server
model. Clients only communicate with a server which, in turn,
propagates world changes or connection updates towards the other
clients. Those architectures are widely spread in commercial Mas-
sive Multi-User Online Games (MMOG) such Second Life [Ste-
nio et al. 2007] or World of Warcraft, and are usually based upon
the TCP protocol. The centralization is particularly desirable for
hosting commercial games: the state of the world can be easily
monitored, allowing the game producer to easily ensure the quality
of service and retain user logins for billing purposes. While user
synchronization is straightforward in this context, the major bot-
tleneck comes from the network interface of the server. As TCP
generates a lot of traffic, the saturation of the servers may result in
denial of service or high latency issues [Svoboda et al. 2007]. An-
other important aspect relates to the persistence of the world: if the
server crashes, the entire world becomes unavailable. To overcome
these problems the servers have to be replicated and constantly syn-
chronized to increase the available bandwidth and reduce the crash
probability.

Decentralized architectures appear more robust and cost-effective
due to the lack of dedicated servers: the bandwidth is distributed
among all the clients, and the probability of a simultaneous crash
tends to be negligible. However, synchronizing a decentralized
world is far from trivial. Many architectures and synchronization
strategies have been proposed to prevent saturating the network
links of the clients. First research works have been performed in
the early 80s within the SIMNET [Miller and Thorpe 1995] for
distributed combat simulation. This work has been later extended
and standardized in the DIS protocols [IEEE-Std-1278 1996] and

implemented in NPSNET [Zyda and Pratt 1991]. HLA standard
protocols [IEEE-Std-1516 2010] extend DIS by introducing cell
partitioning of virtual environments and multicast groups. Strate-
gies and architectures for multicast grouping have been proposed
in SCORE [Léty et al. 2004], NPSNET [Zyda and Pratt 1991] or
DIVE [Carlsson and Hagsand 1993]. However, the use of multicast
addresses is generally restricted or prohibited. Alternative protocols
based on peer-to-peer approaches have been proposed in VON[Hu
et al. 2006] and implemented in VAST.

We propose a solution based on X3D for easy network communica-
tion and synchronization in the context of centralized, decentralized
and hybrid multi-user virtual worlds.

4.2 Towards a Scalable Synchronization of Online
Worlds

The X3D standard provides a high level networking component
based on DIS protocols which, historically, target military applica-
tions. More generic alternatives have been proposed [Bouras et al.
2005] but are limited to centralized architectures and require spe-
cific server software. Our hybrid approach avoids the need for such
servers while preserving easy synchronization.

We introduce a novel X3D node called NetSync for low level
peer-to-peer network communication. This node provides an easy
way to connect and synchronize a list of known peers and share data
among them. The genericity of NetSync combined with scripting
and user-defined PROTO nodes allows for easy design of any kind
of centralized, decentralized or hybrid network architecture.

4.2.1 The NetSync Node

NetSync {
SFBool [in,out] authorizeOtherPeers FALSE
MFString [in,out] peers []
MFString [out] peerDisconnect []
SFString [in,out] protocol "HTTP/1.1"
SFString [in,out] port "80"
SFBool [in,out] enablePipelining TRUE

# list of additional user [in] or [out] fields

SFFloat [in] send_velocity
SFVec3f [in] send_position
SFVec3f [out] position_received
...

}

Figure 11: Prototype of the NetSync node

The NetSync node (Figure 11) is a versatile communication node
for easy connection to multiple peers. Centralized architectures
can be implemented by instantiating a NetSync node in the scene
graph opened in a X3D browser on the server computer (Figure 12).
The peers field of this node potentially stores the list of clients
which are allowed to connect. The scene graph browsed by the
clients also contains a NetSync node with the same name, whose
peers field only contain the address of the server.

Authorizations and user management issues are addressed using
the authorizeOtherPeers flag. By default, the NetSync
node rejects connections issued by peers which are not declared in
the peers field. If the flag is set to TRUE anyone can connect
the NetSync node regardless of the contents of the peers field.
The connection between peers thus only require the knowledge of
their respective IP addresses and an agreement on a common name
for the NetSync nodes. Peer disconnection is handled using the
peerDisconnect output field.



Figure 12: Unidirectional broadcast (left) and client/server (right)
network architectures using NetSync nodes.

The communication between peers is performed using dynamic
user-defined fields in the spirit of PROTO or ComposedShader
nodes. Depending on the application, those fields may include
properties such as the velocity of the user or his current position in
the virtual world. Attention must be paid to the field names, which
must be exactly the same for each of the NetSync nodes. Also, as
mentioned above, the names of connected NetSync nodes must
be identical: this allows a single scene graph to contain multiple
NetSync nodes dedicated to various tasks.

The NetSync node supports the UDP, TCP and HTTP/1.1 pro-
tocols depending on the application. For example, professional
applications would tend to prefer TCP for reliability reasons, at
the expense of the bandwidth. The simplicity of UDP makes this
protocol particularly useful for high-frequency synchronization and
massive multi-user worlds, in which the precision of the interac-
tion is not critical. As TCP and UDP may be faced to deploy-
ment issues regarding the communication on specific ports through
proxies and firewalls, HTTP/1.1 can be used for low-frequency,
generic synchronization. Depending on the current protocol, the
enablePipelining field activates pipelining on HTTP/1.1,
TCP-no-delay on TCP and has no effect in UDP.

In the framework of streaming and synchronization of multi-user
worlds, we used the NetSync node to implement a hybrid syn-
chronization architecture based on peer-to-peer connections com-
bined to a yellow pages server as peer neighbor discovery service.

4.2.2 P2P User Synchronization

Multi-user online worlds usually represent users using avatars as-
sociated to a set of possible actions such joining the world, walking
or sending messages. High frequency synchronization of the users
is performed by a hybrid network architecture implemented using
NetSync nodes (Figure 13) along with specific fields for event
spreading.

The first step for implementing our approach consists in choosing
a super peer which will host a list of all the peers connected to the
virtual world. This system, known as a yellow pages server, allows
newcomers to retrieve the peer list for later interaction. Once the
list is retrieved, a NetSync node is dynamically created on each
client and connected to the peers. This node contains a number of
specific fields such as the location of the corresponding avatar and
potential chat messages (Figure 14). At the end of a session, the
disconnecting peer notifies the yellow pages server and destroys its
synchronization node.

An important aspect of our hybrid peer management based on yel-
low pages servers lies in its ease of use and its robustness: similar
to a centralized approach, the yellow pages server provides a sim-
ple way of identifying the peers. However, each peer retrieves and

Figure 13: Hybrid synchronization architecture based on a yel-
low pages server using the NetSync node combined with X3D
PROTO and scripting facilities. A PROTO encapsulating a yellow
pages server is instanced by a super peer. Newcomers simply in-
stance a yellow pages client (YPC NS) to contact the server and
retrieve the list of connected peers. Each client then instances an
avatar NetSync node (AVA NS0..N) connected to all the neigh-
boring peers for multi-user synchronization.

stores the entire list of peers: if the yellow pages server gets dis-
connected another peer can seamlessly take this role without any
unwanted disconnections or inconsistencies. Finally, in the context
of massive multi-user worlds, a single yellow pages server may be
overwhelmed by the requests from the peers. In this case several
servers may be chosen: those super peers would then instantiate
appropriate NetSync nodes for synchronizing their peer lists.

As in the real world, the interaction between avatars is only possi-
ble within close neighborhood in the virtual world. Based on this
observation, further efficiency can be obtained by network zoning:
the peers can be clustered dynamically based on their relative loca-
tions of the corresponding avatars. This approach spreads the load
on numerous yellow pages servers and reduce the number of simul-
taneous connections opened by the peers.

Figure 14: Yellow page client/server implementation details based
on the new NetSync node extension and X3D prototyping/script-
ing facilities.

5 Results

We implemented our approaches within our X3D browser and ap-
plied for multi-user interaction in a virtual world featuring detailed
geometry and textures (Figure 15). Depending on the location of
the avatars in the virtual world, only the potentially visible objects
are streamed to the client, according to the current budgets and
frame rate constraints (Figure 16, top). The synchronization with
the other users generates a small network traffic as shown in the
bottom of Figure 16. In this world the synchronization is perform
using the TCP protocol.



Figure 15: Multi-user interaction in a streamed virtual world
based on adaptive streaming of geometry and textures combined
with peer-to-peer synchronization.

As shown in the accompanying video, a first peer takes the role
of yellow pages server. Then, newcomers connect this server to
register and obtain the list of other connected peers. Avatar motions,
interactions and chat messages are then synchronized in real-time.

Figure 16: Traffic analysis for streaming and synchronization dur-
ing a multi-user session. Depending on the movements and speed of
the user the visible contents of the scene are requested by the clients
and adaptively streamed from the server. If the set of potentially
visible cells and objects is constant, no further data are streamed
(seconds 120 to 160). When users join the world, interaction data
are exchanged dynamically to ensure peer-to-peer synchronization.

6 Conclusion

The multiplication of collaborative networking and 3D-enabled de-
vices in our everyday life enforces a need for easily deployable
multi-user virtual worlds, regardless of hardware capabilities or net-
work configuration and bandwidth. We propose a unified approach
for adaptive streaming of planet-size multi-user virtual worlds, pro-
viding the user with a click-and-play experience. Based on the ca-
pabilities of HTTP/1.1, our system is based on passive servers and
does not require any dedicated protocol, server software or specific
proxy configuration.

Our adaptive engine focuses on the streaming of geometry and tex-
tures on-demand depending on live estimates of the quality of net-
work links and of available resources on the client. The resources
are efficiently streamed from geographically close servers using
packed binary representations.

The synchronization of multiple users is performed using a local-
ized peer-to-peer approach, in which the clients are connected with
respect to their relative locations in the virtual world. Even though
we designed a specific X3D node for network synchronization, sim-
ilar nodes are also available in other X3D browsers. The stream-
ing and synchronization aspects can thus be supported in any X3D
browser at the cost of minor extensions. This provides the user with
instant access to massive virtual worlds on any device while reliev-
ing the world owners from the management of specific software and
multiple target platforms.
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